
Chapter 8

Number and Equations in the Works of
Descartes, Newton, and their Contemporaries

Let us complete now the overview on the world of numbers and equations as it

emerged at the time of the scientific revolution, by looking at the all-important work

of René Descartes (1596–1650) and some of his British contemporaries, including

the giant figure of Isaac Newton (1642–1727). Before entering into details about

Descartes’s ideas, however, it is important to stress that his entire scientific enter-

prise, including his views about numbers, should be best understood in the frame-

work of a broader discussion of his philosophical system. As a matter of fact, there

are not many cases in the history of mathematics where the connection between

a philosophical doctrine and the development of scientific ideas is as strong and

unmistakable as in the case of Descartes. For the purposes of our account here,

suffice it to say that the text whose contents we will examine more closely in order

to understand his views on arithmetic and geometry, La géométrie, appeared in 1637

as one of three appendixes to one of Descartes’ well-known philosophical treatises,

Discours de la methode. For Descartes, mathematics was in the first place an invalu-

able tool for educating the mind so that it could be fit for penetrating the secrets

of nature and the true grounds of metaphysics. Above all, the mathematical ideas

presented in the appendix to his philosophical book were intended as a well-focused

and particularly important illustration of the philosophical system discussed in the

main text.

8.1 Descartes’ New Approach to Numbers and Equations

A convenient way to understand Descartes’ original ideas on numbers and equations

is by comparison to Viète. First, like Viète, Descartes saw his ideas as part of a

general method for “solving any problem” in mathematics. Descartes also took for

granted the same widespread assumption about the putative method of “analysis”

that the ancient Greeks had maliciously hidden from us, and that should be renovated

now. Descartes thought that Viète had already made an important contribution in that

direction but there was still need to do more.

Viète, as we saw, devoted himself to developing the old-new analysis from a

hands-on mathematical perspective: he started from the algebraic methods known
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in his time and tried to extend the use of the symbolic methods to all possible quan-

tities, both discrete and continuous. Descartes’ starting point, to the contrary, was a

philosophical perspective that looked at scientific problems in general and attempted

to systematically classify them so as to be able to determine beforehand the appro-

priate solution for each and every one of them. Algebra was his tool of choice for

approaching this task. In general he adhered to the widespread view that algebraic

methods such as taught by Viète involved a rediscovery of techniques the ancients

had systematically concealed. But in some places he was eager to emphasize the

novelty implied by his own methods.

Both Viète and Descartes faced the need to translate geometrical situations into

symbolic language, but each of them made this translation in his own way. Viète

defined the multiplication of two segments as a rectangle formation (that is: an

operation between two magnitudes of the same kind yielding a third magnitude

of a different kind). But when it came to equations he always adhered to strict

dimensional homogeneity. Descartes, on the contrary defined multiplication of two

lengths in way that yield a third length, as we will immediately see. He did as much

for the other algebraic operations: dividing one length by another to yield a length

and extracting the root of a length to yield a length. In addition he made the first

steps in the newly conceived idea of analytic geometry, whereby he established a

direct link between geometric figures, such as a straight line and a parabola, and a

certain well-defined class of equations representing each type of them.

In retrospect, one can find some of these ideas in the works of Descartes’ pre-

decessors (Bombelli defined a multiplication of lengths that yield a length; Fermat

came up with some of the basic ideas of analytic geometry), but what appeared in

previous works as hesitant or sporadic, as a first step that was not carried through,

or perhaps as a passing comment, becomes with Descartes an organically inter-

connected whole, which is systematically pursued with far-reaching consequences.

Descartes’ views on the interconnection between algebra and geometry led to a more

general and abstract understanding of the idea of an equation under which the tra-

ditional requirement of dimensional homogeneity would eventually (but as always,

only hesitantly) be abandoned. Descartes himself, for one, did try to preserve homo-

geneity in many of the equations he considered. But his approach allowed in prin-

ciple, and in practice also led to, the possibility of ignoring, once and for all, this

burdensome requirement that was a legacy of centuries and that hindered the full

understanding of what is involved in working with a polynomial equation. Let us

see some details of how he worked out these ideas.

Descartes’ definition of the multiplication of two segments, BD and BC, is pre-

sented in Figure 8.1. The most important feature of this multiplication is that its

outcome is not an area but rather a third segment, BE. The procedure is based on

defining a certain length, AB, which is considered to be a “unit length”, namely,

a segment whose length is 1. The segment BE is constructed by placing the three

segments AB, BC, and BD, as indicated in the figure.

In the figure, segment AC is first drawn and then DE is drawn from D and parallel

to AC. A simple consideration of similarity in the triangles yields the proportion

AB:BC :: BD:BE. And since the length of AB is 1, then we obtain that the length
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Fig. 8.1 Descartes’ multiplication of two segments.

BE equals the product of the lengths BC and BD, as requested. It is clear how this

same diagram can be used to construct the segment BC as the division of two given

segments BD and BE, with the help of the same unit lengthAB.

In a different example, shown in Figure 8.2, Descartes showed how to obtain

a segment which is the square root of a given segment. Given a segment GH, we

extend it to reach the point F, with GF being the unit-length segment. The segment

FH is bisected at K, and we trace the circumference FH with center at K and radius

KF. At G we raise a perpendicular that cuts the circumference at I. A simple theorem

about circles, that was known to Greek geometers, states that the square built on GI

equals the rectangle built on the segments GF, GH. As the length of GF was set to

be 1, we get G I 2 =GH, or, in other words, GI is the square root of the given segment

GH.

Fig. 8.2 Descartes’ extraction of a square root of a given segments.

To the reader of the present book these two examples may seem utterly trivial

and as requiring no additional explanation. What have we done here, after all? No

new knowledge seems to be involved, other than simple theorems about similarity

of triangles and a property of the circle. And indeed, Descartes’ La géométrie is

the first among the texts we have examined up to this point in the book, that a

modern-day mathematical reader can approach with concepts, terminology, nota-
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tion and methods that are essentially known to him. But this is precisely the point

I am trying to emphasize here, and that highlights the striking innovations involved

in Descartes’ work. Descartes’ approach to solving problems via geometrical con-

structions, where magnitudes are considered as numbers without restrictions, and

where one freely operates with these magnitudes in the framework of algebraic

equations, is absolutely close to our understanding because it has left behind the

bulk of the previous, more limited views on numbers. Descartes wrote explicitly

that it is possible to find the appropriate construction to solving any geometrical

problem by finding the lengths of some segments. His definition of operations with

segments was aimed precisely at fulfilling this task.

If Descartes defined the operations with lengths on the basis of theorems that

were known to the Greeks, it is evident that not a technical difficulty prevented any

of his predecessors to take the step he took in defining operations between segments

the way he did. Rather, what was at stake were more fundamental questions of

principle about mathematics, about the relationship between geometry and algebra,

and about the question of what are numbers and what is their role in mathematics.

At the technical level, the key for defining the various operations lays in one step

which is almost imperceptible, and certainly almost insignificant from the point of

view of modern mathematics, but which is the crucial one here: the use of a segment

of “unit length” in each of the operations above (AB in the case of multiplication,

FG in the case of root extraction). It is this unit segment that allows, at the bottom

line, to finally overcome the need for distinguishing between magnitudes of differ-

ent dimensions and for abiding by the homogeneity among terms appearing in an

equation. Unit lengths, to be sure, had appeared in geometric texts from the time

of Islam. They had also appeared more recently in texts that explored in a tentative

manner the relations between geometry and algebra in more modern terms. But it

was only its systematic use by Descartes in the framework of his innovative treat-

ment of geometry—and of the operations with segments as part of it—that turned it

into a fundamental piece of a new, overall conception of numbers and magnitudes.

The systematic introduction of the unit length afforded the possibility to abandon

the need to strictly abide by dimensional homogeneity, and from his explanations it

is clear that Descartes was aware of it. Still he did not immediate give up the habit

to do so. He used a symbolic language similar to that of Viète, with one stylistic

difference that has remained in use up to our times: the first letters of the alphabet

are used for the known quantities and the last ones for the unknown quantities. In

this regard he wrote in the opening passages of Book I of La géométrie:1

Often it is not necessary thus to draw the lines on paper, but it is suffi-

cient to designate each by a single letter. Thus to add the lines BD and

GH, I call one a and the other b, and write a+b. Then a−b will indicate

that b is subtracted from a; ab is that a is multiplied by b; a/b that a is

divided by b; aa or a2 that a is multiplied by itself; a3 that this result is

1 (Descartes 1637 [1954], p. 5).
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multiplied by a, and so on, indefinitely. Again, if I wish to extract the

square root of a2 + b2, I write
√

a2 + b2, if I wish to extract the cube

root of a3 − b3 + abb, I write
√

C.a3 − b3 + abb, and similarly for

other roots.

Notice another interesting, if minor stylistic difference between Descartes and

current usage, namely that Descartes indicates the cubic root with a letter C inside

the root symbol, rather than as an index outside it. This follows from a fact that is

interesting in itself in the context of the history of the concept of numbers, namely,

that roots are not yet conceived as a fractionary power, and as a matter of fact not

as a power at all. The square root is taken here of a quadratic expression, whereas

the cubic root is taken of an expression which is a sum of cubes. But from the

explanation one can easily understand that this kind of homogeneity is not necessary

thanks to the use of the unit length. And indeed, after the above passage Descartes

added the following:

Here it must be observed that by a2, b3 and similar expressions, I

ordinarily mean only simple lines, which, however, I name squares,

cubes, etc. so that I make use of the terms employed in algebra ...

It should also be noted that all parts of a single line should as a rule

be expressed by the same number of dimensions, when the unit is not

determined in the problem. Thus a3 contains as many dimensions as

abb or b3, these being the components of the line which I have called√
C.a3 − b3 + abb. It is not, however, the same thing when the unit is

determined, because it can always be understood, even where there are

too many or too few dimensions; thus if be required to extract the cube

root of a2b2 − b, we must consider the quantity a2b2 divided once by

the unit, and the quantity b multiplied twice by the unit.

In order to understand the full significance of this new possibility of bypassing

the traditional demand for homogeneity, thanks to the introduction of the unit length

and the steps taken by Descartes based on it, you will find it relevant to revisit

briefly some passages in §3.7 (especially those related with Figure 3.12 and Figure

3.13), where we discussed the lack of length measurements in synthetic geometry

as presented in the Elements. This lack of measurement continued to influence the

mainstream of Greek geometry and thereafter, but all of this changed now with

Descartes.

By adopting a thoroughly abstract algebraic approach in geometry, based on an

appropriate symbolism and on the use of a unit length, Descartes came up with truly

novel constructions that could be used in solving longstanding open problems, as

well as in providing new solutions to problems that had previously been solved. A

straightforward example is that of the quadratic equation (see Appendix 8.5).

A more complex example concerns Descartes’ solution of the geometric locus of

four lines. This problem had remained unsolved since the time of Pappus (see Figure

4.4). It was as a result of Descartes’ efforts to solve this problem (as he understood it
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at the time) that he introduced the basic ideas of analytic geometry. The techniques

he developed allowed him to tackle, with the same method he used for the 4-lines

locus, also the general, n-lines locus problem. His solution represented a crucial

milestone in the history of mathematics, but for lack of space, it will not be possible

to discuss it in this book.2

From his treatment of geometric constructions with the help of algebraic meth-

ods, Descartes was also led to focus on the investigation of equations and of polyno-

mials as objects of intrinsic mathematical interest. In this context he systematically

developed some important ideas that had already incipiently surfaced in the works

of Cardano and others. One of them is the relationship between the solutions of

an equation and the possibility of factorizing the corresponding polynomial into

elementary factors. Descartes, by the way, did not yet clearly distinguish between

the polynomial (say, x2 − 5x + 6) and the equation (x2 − 5x + 6 = 0).

Descartes also analyzed the relationship between the signs of the solutions and

those of the coefficients of the polynomial. When we replace the unknown x with a

certain value a, and the value of the polynomial expression is zero, Descartes called

that value a “root” (and we continue to do so). If the roots of a given polynomial

are, say, 2 and 3, Descartes showed that the polynomial is obtained as a product of

two factors (or, as he said, of two equations): (x − 2) and (x − 3), and hence the

equation in question is x2 − 5x + 6 = 0. If we want to add the root 4, then we need

to multiply by (x − 4) = 0, thus obtaining the equation x3 − 9x2 + 26x − 24 = 0.

Descartes was very clear in his attitude towards negative solutions: he considered

them as possible roots, but he called them “false” (faux) roots, as Cardano had also

done much earlier. “If we suppose x to represent the defect [defaut] of a quantity

5—he said—we have x+5 = 0, which multiplied by x3−9xx+26x−24 = 0, gives

x4− 4x3− 19xx+ 106x− 120 = 0.” This was for him an equation with four roots,

three of which are “true roots” (2,3,4) and one is a “false” root, 5. In addition, the

number of “false” roots equals the number of times that the signs of the coefficients

of the equation remain the same when passing from a power of the unknown to

the one immediately under it (in this case, this happens only once: −4x3 − 19x2).

These are known nowadays as “Descartes’ rules of signs”. The number of “true”

roots equals the number of times that the signs of the coefficients of the equation do

change when passing from a power of the unknown to the one immediately below

it.

It was unavoidable that as part of this kind of investigation, Descartes would

have to deal with equations leading to the appearance of roots of negative numbers.

His position on this issue is interesting and it turned out to be very influential. To

see what it was, we need to comment on the so-called “fundamental theorem of

algebra”, already mentioned in Chapter 1. It states that every polynomial equation

(with real or complex coefficients) of degree n has exactly n roots, some or all of

which may be complex numbers.

2 See (Bos 2001, pp. 273-331).
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Descartes was aware, as we just saw, of the relationship between the fact that a

is a root of the polynomial and that the latter can be divided exactly by the factor

(x − a). It was surely natural for Descartes, then, to somehow come up with the

basic idea behind the fundamental theorem. Indeed, the idea had already been hinted

at in various ways by Descartes predecessors, such as Cardano. It had appeared

quite explicitly in a book that was well-known at the time, L’invention en algebra,

published in 1629 by Albert Girard (1595–1632).

Descartes pointed out, in the first place, that the number of roots of a polynomial

equation cannot be greater than the degree of the equation. Later on, in Book III, he

wrote explicitly:3

For the rest, neither the false nor the true roots of the equation are

always real, sometimes they are only imaginary, that is to say that one

may always imagine as many in any equation as I have said, but that

sometimes there is no quantity corresponding to those one imagines.

In other words, Descartes asserted the existence, beyond “true” roots, also of roots

which are false and also of others which are only “imaginary” or “imagined”. Only

if one takes these roots into consideration, he emphasized, then their number equals

that of the degree of the polynomial. Even if at this point Descartes was not yet

willing to bestow on all these kinds of roots equal status as legitimate kinds of

numbers, the identical role they played from the point of the polynomial was now a

major mathematical consideration that could not be easily overlooked.

Descartes’ views on polynomials, including the important insight on the num-

ber of roots, implied a significant breakthrough, especially since it appeared in

the framework of an influential book on geometry. From now on mathematicians

would refer to a new kind of entity, autonomous and abstract, the polynomial, to

which much attention needed to be directed. Many questions that arose previously

in different contexts, and that were investigated separately, would be treated now

from a unified point of view based on the new knowledge developed in relation with

the polynomials and their roots. Rather than speaking about specific questions with

unknown quantities, each separately treated according to its type and to the degree

in which the unknown appears in it, all of them were now seen as particular cases of

a more general theory, the theory of polynomials. The availability of a flexible and

efficient symbolism such as Descartes developed in his work, as a high-point of a

long and hesitant process that preceded it, played a crucial role in this development.

Many important additional developments over the following centuries in mathemat-

ics in general, and in algebra in particular, derived from this new perspective whose

clear origin was with Descartes.

But at the same time, we should pay close attention to the interesting nuances

that appear in Descartes’ approach to numbers of the various kinds. When he spoke

about “imaginary” roots, for example, Descartes meant it quite literally, that is to

3 Quoted in (Bos 2001, p. 385).
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say, he saw them as numbers that are only in our imagination, and hence they nei-

ther represent a geometric quantity nor are similar to other kinds of numbers that

appear as roots. Under the marked influence of this text, terms like “imaginary” and

“real” were sweepingly adopted by mathematicians of the following generations.

Nonetheless, this was not really of great help in giving some coherent meaning or

in understanding the nature of expressions that comprised square roots of negative

numbers. Even his attitude toward the “false” roots cannot be seen as true progress

towards a more systematic incorporation of the idea of negative numbers. Descartes

did include the “false” roots under those that are “real”, but he never considered the

possibility of speaking about a negative number in isolation: the false roots appear

as part of the expression (x + a) that divides the polynomial, and in the polynomial

one may find coefficients that are preceded by the sign “−”, as we saw.

Evidently, this kind of practice involving the continued use of all such kinds of

numbers as part of the theory of polynomials made it easier and more natural to

accept them gradually as part of the general landscape of arithmetic. But the full

acceptance was not part of Descartes’ own view, as one may see in his approach to

solving purely geometrical problems. When explaining the geometric way to solve

quadratic equations (as shown in Appendix 8.5), Descartes specifically refrained

from dealing with the equation z2+az+bb = 0, precisely because a and b represent

here lengths (that is, positive quantities), while the only solutions that one obtains

are negative, which are devoid of geometrical significance. For the same reasons,

also in his analytic geometry we only find positive coordinates. The idea that coor-

dinates may be either positive or negative appeared somewhat later, simultaneously

with the increasing acceptance of the legitimacy of negative numbers.

8.2 Wallis and the Primacy of Algebra

The year 1631 was important in the history of algebra in the British Isles. It saw

the publication of two books that marked the beginning of an increased pace in

algebraic activity in the British context: Clavis Mathematicae (“The Key of Math-

ematics”) by William Oughtred (1575–1660) and Artis Analyticae Praxis (“The

Practice of the Analytic Art”) by Thomas Harriot, posthumously published. This

increase in algebraic activity was accompanied by debates about the question of the

relationship between algebra and geometry, and in particular about the nature and

role of numbers of various kinds. Following Oughtred and Harriot, no one played

a more significant role in helping assimilate and develop algebraic ideas among

British mathematicians than John Wallis (1616–1703).

Wallis contributed many of his own original ideas to the continued expansion of

the concept of number and the continued blurring of the borderline between numbers

and abstract quantities. Unlike many of his predecessors and many contemporaries

that continued to abide by more classical views, Wallis unequivocally attributed full

conceptual precedence to algebra over geometry. Likewise he actively put forward

many attempts to finding coherent ways to legitimize the use of negative and imag-
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inary numbers. It is therefore important to devote some attention to his ideas as part

of our account here.

Wallis’ serious involvement with mathematics came at a relatively late age and in

a rather non-systematic way. He was formally trained in the classical tradition which

included mainly the study of Aristotelian logic, theology, ethics, and metaphysics,

and in 1640 he was ordained priest. Like Viète, also Wallis developed a keen interest

in cryptography. During the English Civil Wars of 1642–1651 he exercised his skills

in decoding Royalist messages for the Parliamentarian party. It was only in 1647, at

the age of 31, that he studied Oughtred’s Clavis for the first time. This marked the

beginning of his highly creative mathematical career. In 1649 he was appointed to

the Savillian Chair of Geometry at Oxford.

Wallis’ most original contributions relate to calculations of areas and volumes,

as well as tangents. At the time, such calculations started to involve geometric sit-

uations of increasing complexity that, over the next few decades, became the core

of the infinitesimal calculus. The problems discussed as part of this trend occupied

the minds of the leading mathematicians of the period. But while most of them tried

their best using methods that were essentially geometric and followed the Greek

indirect method for dealing with the infinite (see Appendix 3.10), Wallis went his

own way and introduced many new arithmetic methods for dealing with infinite

sums and products. It was here that Wallis displayed the full power of his mathe-

matical ingenuity and developed truly original methods.

One of his most stunning results, published in 1656 in his Arithmetica Infinito-

rum, involved an innovative method for approximating the value of π . Like Viète’s

calculation almost eighty years earlier, also Wallis’ method involved an infinite

product. However, this one was based on arithmetic considerations, rather than on

geometrical approximation, and hence it was much more powerful. It can be sym-

bolically represented as follows:

π

2
=

2

1
·

2

3
·

4

3
·

4

5
·

6

5
·

6

7
· . . .

Wallis also expanded the concept of power to include negative and fractional expo-

nents, being the first to work out useful insights such as a1/2 =
√

a or a−n = 1
an

(even though his notation was somewhat different from ours).

One of the more impressive displays of the power of algebraic methods in the

work of Wallis appeared in his treatment of conic sections. The recent development

of Cartesian methods had helped characterize a parabola with the help of a quadratic

equation y = ax2+bx+c. Wallis was the first to do something similar for the ellipse

and the hyperbola. Because of his success in providing algebraic tools for dealing

with a topic that, in the purely geometrical treatment of Apollonius had traditionally

been considered to be of extreme difficulty, Wallis saw himself as implanting sim-

plicity in a field that had previously deterred many. Apollonius’ original treatment

was still the only one available at the time of Wallis, and Wallis was truly proud of

the deep change he brought into the field of research on conic sections.
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Wallis joined those who believed in the existence of a lost analytic “method of

discovery”, which “was in use of old among the Grecians; but studiously concealed

as a Great Secret”. Therefore, like Viète and Descartes before him, he saw his work

as both continuation and an improvement of that putative analytic method.

From the perspective afforded by his strongly arithmetic approach Wallis also

advanced a further significant step in the direction of looking at proportions as no

more than equalities between two fractions. In doing so, he simply dismissed off-

hand, in a more decisive and unequivocal fashion than anyone prior to him, the

ages-old separation between ratios and numbers. Wallis spoke of a ratio between

two numbers or two magnitudes simply as a division of the first by the second. Plain

and simple, as we would consider it nowadays. In this view, four magnitudes are said

to be in proportion if the ratio of the first to the second, seen as a number, equals the

ratio of the third to the fourth, also seen as a number. In other words, for Wallis the

proportion a:b :: c:d was not different from the identity a/b =c/d. Remarkably, Wallis

did not emphasize that he was changing an accepted view rooted in a centuries-old

tradition and based on a completely different definition.

In considering arithmetic rather than geometry as the more solid conceptual basis

for mathematics at large, Wallis had few constraints in using all kinds of numbers

in various mathematical contexts. Nevertheless, he did not always promote a full

acceptance of numbers of all kinds. Wallis’ views on the legitimate use of nega-

tive, rational and irrational numbers were somewhat fluctuating. Negative numbers

were for him a necessity, but he did not always consider them as legitimate in all

situations, because it is not possible that a quantity “can be Less than Nothing, or

any number fewer than None”. A ratio between a positive and a negative number

he initially considered as devoid of meaning, but later on he came up with a strange

argument that proved—so he thought—that dividing a positive by a negative number

yields a result “greater than infinity”.

And yet, since the idea of negative number was so useful and it is not “altogether

absurd”, Wallis suggested that these numbers should be given some kind of interpre-

tation via a well-known physical analogy. More generally, for a mathematician like

Wallis, it was imperative to provide some kind of underlying conceptual consistency

to arithmetic and to avoid “impossible” situations that might arise in operating with

natural numbers: subtracting a greater number from a smaller one, dividing a num-

ber by another number which is not a factor, extracting square root of a non-square

number or a cube root of a non-cubic number, or coming up with equations whose

roots are square roots of negative numbers.

In spite of his own definition of ratio as a division of numbers, Wallis had doubts

about the legitimate status of fractions and of irrationals. Still, given their practical

usefulness in the solutions of many mathematical problems (including the kinds of

innovative solutions that he himself had been developing with infinite series and the

like), he did not limit their use. He chose to consider them as approximate values

expressible in terms of decimal fractions as Stevin had taught. Concerning negative

numbers, he was not able to come up with any definitive argument to justify their

legitimacy, and all he was able to gather was a series of more-or-less convincing

claims.
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So, somehow along the lines of Descartes, Wallis defined both negative numbers

and their roots as “imaginary”, in the sense that negative numbers represent a quan-

tity which is “less than noting”. With this definition his intention was to promote the

view that whoever accepts the legitimacy of the negative numbers has no real reason

to reject that of their square roots. This was a wise move. He suggested extending to

imaginary numbers the kinds of arguments typically used for providing legitimacy

for the negatives, namely, some well-conceived physical analogy. The details of his

argument are worthy of discussion here.

In his Treatise on Algebra, published in 1685, Wallis came up with the follow-

ing original account of imaginary numbers (Figure 8.3): on a straight line where a

starting point A is indicated, a man walks a distance of 5 yards in the direction of

B, and then he retreats a distance of 2 yards in the direction of C. If asked what is

the distance he has advanced, one will have no hesitation in answering 3 yards. But

if the man retreats from B 8 yards to D, what is the answer to the same question?

Clearly −3, and Wallis said “3 yards less than nothing”.

Fig. 8.3 Wallis’ graphical representation of negative numbers on a straight line.

This obvious argument is presented just in preparation for Wallis’ original idea

on how to interpret in a similar, graphic way the square roots of those same negative

numbers. What happens, he then asked, if on a certain place on the seashore we

gain from the sea an area of 26 units and loose to the sea, in some other place,

and area of 10 units? How much have we gained, all in all? Clearly an area of 16

units. If we assume this area to be a perfect square, then the side of this square is

of 4 units of length (or−4 units, if we admit the negative roots of positive squares).

Nothing special or new thus far. But now, what happens if we gain from the sea 10

units and loose in some other place 26 units. In analogy with the previous case, we

may say that we lost 16 units, or gained −16 units, and if the area lost is a perfect

square, what is then its side? It is, he concluded, the square root of −16. This was

Wallis’ point: negative numbers and imaginary numbers are equally legitimate or

equally illegitimate, and there is no reason to accept the former and reject the latter

in mathematics.

Wallis tried yet some other, possible geometrical interpretations of the imaginary

numbers. One of his ideas was based on the construction of the geometric mean of

two (positive) magnitudes b, c (we can denote it here as
√

bc). A classical construc-

tion of this means is embodied in the diagram of Figure 8.4.

This construction is based on an elementary theorem on circles (already men-

tioned above in relation with Descartes), stating that if AC is the diameter and PB

is orthogonal at any point B on the diameter, then the square built on PB equals

in area the rectangle built on AB,BC. Wallis suggested to consider the square root



196 8 Descartes, Newton, and their Contemporaries

Fig. 8.4 The geometric mean of two quantities, b, c.

of a negative number as the geometric mean of two lengths, one of them positive,

the other negative: for instance, −b, c or b,−c. Graphically, this is represented in

Figure 8.5.

Fig. 8.5 Wallis’ representation of an imaginary number as the geometric mean of a positive and a

negative quantity.

Indeed, if we take the quantity b to the left of A, so that AB = −b, and then

the quantity c to the right of B, so that BC =c, and hence AC = −b + c, then it is

easy to see by a simple geometric argument, that PB, the tangent to the circle on P,

represents the geometric mean
√
−bc.

Wallis was not really satisfied with this, and he went one step further, suggesting

yet another geometric interpretation, which comes very close to the one that will

eventually turn into the accepted interpretation of complex numbers. We will speak

in greater detail in Chapter 9 about this later interpretation and its origins in the 18th

century, but as a brief reminder for the readers at this point, I just want to empha-
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size that the geometric interpretation is based on extrapolating the representation

of real numbers on a straight line into the entire plane as a way to representing

the complex numbers. Wallis’ last and very original attempt to interpret imaginary

numbers geometrically also extended the representation from the straight line to the

plane but the way he followed turned out to have serious limitations. It appeared as

part of an explanation of the geometric meaning of solutions to quadratic equations

x2+2bx+c2 = 0, where b and c are positive quantities. The solutions are obtained,

of course, through the formula:

x = −b ±
√

b2 − c2.

Wallis drew up a diagram in which the solutions appear as two points P1, P2, and in

which one sees that real solutions may exist only when b ≥ c (Figure 8.6).

Fig. 8.6 Wallis’ graphic representation of two solutions to the quadratic equation. The sides of the

triangle are of length b and the same length is taken on the horizontal axis to the right of O.

But what happens here when c > b ? From the algebraic point of view, the

formula says that the solution would involve square roots of negative numbers. In

terms of the diagram, what we see is that the points P1, P2 would lay outside the

line that was chosen to represent the numbers, and yet they lay on the same plane

(Figure 8.7).

This appears indeed as a possible representation of these roots of negative num-

bers. But a significant problem arises immediately: if b is taken to decrease con-

tinually, then P1, P2 will approach each other on the plane. If b finally becomes

zero, then P1 = P2. The meaning of this is that
√
−1 = −

√
−1, which is clearly

unacceptable.

Seen against the background of contemporary debates on the nature of number,

and in particular of Wallis’ own uncertain views about the negative numbers, one

is not surprised to realize that he tried hard and had some brilliant starts, but that

he did not succeed in forming for himself a coherent view of a possible geometric

representation of imaginary numbers. As I already pointed out, analytic geome-

try started its way more or less at that time in the work of Descartes (and inde-

pendently also in the work of Fermat). Also the more general implications of the
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Fig. 8.7 Wallis’ graphic representation of imaginary solutions to the quadratic equation on the

plane.

relationship between geometrical forms and algebraic expressions embodied in this

mathematical discipline took time to be fully worked out. Negative coordinates, for

example, did not appear from the beginning, among other things because of the

uncertain status of the negative numbers. The work of Wallis, precisely because of

his acknowledged accomplishments in successfully applying innovative and pow-

erful arithmetical methods, is of special interest to highlight the difficulties still

encountered at this time in dealing with such concepts that we deem nowadays so

simple and straightforward. It also highlights the influence, still pervasive at that

time, of views on numbers stemming from the ancient Greek tradition.

8.3 Barrow and the Opposition to the Primacy of Algebra

In the last part of the 17th century there developed in England a trend that took

a more restrained attitude towards the rising tide of Viète and Descartes’ kind of

algebra. This trend mistrusted algebra as a possible source of certainty in mathe-

matics and sought to restore primacy to synthetic geometry seen along the lines of

the classical Greek tradition. Two main figures in this trend were Thomas Hobbes

(1588–1679) and Isaac Barrow (1630–1677). The transparent structure of geometry

was in their view the perfect paradigm of simplicity, certainty and clarity. Nothing

like this could be found in either arithmetic or algebra, in their view. They opposed

the use of algebraic arguments for solving geometrical problems, but they cared to

state that their opposition did not imply a more general, negative attitude to the spirit

of the new science and the mathematics of their times. Rather, they had very clear

and specific arguments against the use of algebra in certain situations. So, some of

the algebraic ideas and methods introduced by Viète and Descartes, and by their

British followers, did find a way into their works and were naturally incorporated

therein in spite of their declared opposition. This gave rise to an interesting and orig-

inal synthesis, which is of particular interest for our story. Let us see some details

as they are manifest in the work of Barrow.
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Barrow was a profound scholar with a very broad background in classical and

modern languages, and a deep interest in divinity studies. He was professor of Greek

until 1663, when he was appointed the first Lucasian Professor of Mathematics at

Cambridge. A few years thereafter he would renounce the chair on behalf of New-

ton, whose outstanding talents he was among the first to recognize while Newton

was still a student.

One of Barrow’s earliest mathematical publications was an abridged and com-

mented Latin edition of Euclid’s Elements, published in 1655. In its English transla-

tion of 1660 it became a widely used text in the British context up until the 18th

century. Barrow incorporated into this text some clearly algebraic elements and

combined them into his purist approach to geometry. At the same time he explic-

itly emphasized that in his presentation he was not deviating in any sense from

the original. It is likely that he was sincere in this belief, even though in historical

perspective the deviation is more than obvious. Let us take one specific example,

namely, theorem II.5 of the Elements.

In many of the propositions discussed in his edition, instead of the classical

accompanying diagrams, Barrow preferred to write the geometrical property to be

proved in an idiosyncratic symbolic language. This did not translate the property

into an algebraic equation, to be sure, and his symbols were not mean to be manip-

ulated. But Barrow’s symbolism allowed, if not actively suggested, a reading of

Euclid in which the geometric magnitudes could also be seen as abstract quanti-

ties. He mixed without much constraint classical geometric constructions, symbolic

expressions, and numerical examples. Still, he kept stressing that he followed this

approach just in order to present the proofs (which he characterized as fully geomet-

ric in spirit) in a more condensed manner. This point is better understood by looking

at a detailed example, which I have presented in Appendix 8.6.

This unique blend of a declared attitude that promoted the classical standards of

Greek geometry, on the one hand, and, on the other hand, favored the adoption of a

symbolic language as a way to allow for a clearer presentation of geometrical results

stands also in the background of Barrow’s attitudes towards numbers. His views are

known to us via the texts of his lectures in Cambridge, beginning in 1664. Arguing

for the primacy of geometry over algebra, Barrow put forward some philosophi-

cal statements, not always very convincing, about the way in which the objects of

geometry are perceived through the senses. Quantities, he said, appear in nature only

as “continuous magnitudes”, and these are the only true objects of mathematics.

Numbers, as opposed to magnitudes, are devoid of independent existence of their

own and they are nothing other than names or signs with the help of which we refer

to some magnitudes.

Barrow explicitly criticized Wallis’ views on numbers and algebra. If for Wallis

the formula “2 + 2 = 4” was true independently and previous to any geometrical

embodiment of it, for Barrow it was arbitrary and devoid of autonomous meaning.

Indeed, for him, it was constrained by the ability to apply it in some specific geo-

metric situation. For example, when we add a line of length 2 feet to another line

of same length, then we obtain a line of length four feet. But when we add a line of

length 2 feet to a line of length 2 inches, we obtain a line neither of length 4 feet nor
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of length 4 inches, nor of any other 4 known units. So, in his view, the meaning of

the sign 2 depended directly on the geometric context to which it is applied.

But if natural numbers are no more than signs for magnitudes, what can then

be said about irrationals, negative or imaginary numbers? Irrational numbers were

the easiest to adapt to Barrow’s views, and indeed he used them to strengthen his

position as opposed to that of Wallis. His claim was that there is no number, either

integer or fractional, that when multiplied by itself yields 2, and from his own point

of view there is no need to understand
√

2 in terms of natural or fractional numbers,

or even approximations of decimal fractions (as was the case of Wallis). For Barrow,√
2 was nothing but a name, or a sign, that indicates a certain geometrical magni-

tude, namely, in this case, the length of the diagonal of the square with side 2. And

from here he also derived an additional criticism to Wallis, namely to the latter’s

arithmetic interpretation of ratios and proportions, that so strongly deviated from

the classical Greek tradition, as we just saw above. Barrow admitted that certain

ratios, but by no means all of them, can be expressed as fractions. The classical case

of the diagonal of a square was for him the indisputable instance to think about in

this regard. Ratios, in Barrow’s views, could in no way be conceived as numbers,

since numbers represent only magnitudes.

Negative numbers—Barrow suggested very much like Wallis—should be seen as

differences between a smaller and a larger natural number. But then, how can one

interpret the number −1, when 1 is no more than a sign to indicate a magnitude?

Well, here Barrow admitted the difficulty of thinking about a number that is “less

than nothing”, but he illustrated the idea with the same kinds of physical-geometrical

analogies adduced by Wallis. And concerning the roots of negative numbers: inter-

estingly, Barrow did not mention them at all.

Wallis and Barrow are emblematic representatives of two trends in mid-

seventeenth century British mathematics that laid their stress on different aspects of

mathematical practice. These trends, however, were not diametrically opposed and

they complemented each other in various respects. Wallis’ concerns with algebraic

methods as new instruments for discovery, for example, did not imply a disregard for

Barrow’s insistence on classical rigor. On the other hand, Barrow’s preference for

geometry should not be seen just as a stubborn refusal to adopt “modern” methods.

At the time, only a rather limited kind of curves could be treated with the help of

algebraic methods (curves that we call nowadays “algebraic curves”). Other kinds of

curves, such as spirals and cycloids (which we refer to nowadays as “transcendental

curves”) could not be covered by algebra. A mathematician like Barrow aimed at

developing mathematical methods of a clarity and generality that algebra could not

deliver at the time the way geometry did.

8.4 Newton’s Universal Arithmetick

The trends of ideas embodied in the works of Wallis and Barrow interacted at the

heart of a process where innovative views on the relationship between algebra and
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geometry gradually consolidated. A modern conception of number was among the

outcomes of this process. The intellectual stature of Wallis and Barrow and their

acknowledged status within the British mathematical community turn their con-

trasting views and debates, as well as their points of convergence, into a highly

visible milestone from which to analyze this significant crossroads in the history

of mathematics. But at the bottom line, these processes, and indeed all significant

processes that shaped British contemporary ideas in the exact sciences, crystallized

under the towering shadow of Issac Newton and his pervasive influence.

I devote the last section of this chapter to a brief description of Newton’s views

on numbers. When examining his work, however, one must always keep in mind the

complexity of the task involved. The entire 17th century, as we have seen thus far,

is a truly transitional period in all what concerns the disciplinary identity of math-

ematics. While in the 16th century, Euclidean methods provided a stable reference

model, and while in the 18th century mathematicians will refer to the calculus as the

language and method that will provide an underlying unity to their field, Newton’s

time is precisely that of passage from the former to the latter. Questions about the

interrelation between geometry and arithmetic, and the related ones about the nature

of magnitudes and numbers, arose in this context along new questions about the

applicability of mathematics to study of the natural world.

But on top of the difficulty generated by the originality and intrinsic depth of

Newton’s mathematical ideas in a time of deep changes, one cannot overlook the

variety of methodological, institutional and personal considerations that keep affect-

ing his work at different periods of his lifetime. We find interesting tensions between

his declared intentions, his practice and his method. We must examine linguistic

and publication choices related to the various dialogues and confrontations that

he entertained with his contemporaries (and of particular interest are those with

Descartes and Leibniz). We need also to consider the different kinds of intended

readers he addressed in different texts that he wrote. In short, we should not assume

that Newton’s ideas on any topic, the idea of number included, can be summarized

under a simple, coherent formula or description.

As a young student in Cambridge, Newton immersed himself in the study of the

mathematical works Viète and Descartes, as well as those of Oughtred, Wallis and

Barrow. He came up with an efficient and thoroughgoing synthesis of concepts and

symbols introduced earlier in all active fields of mathematics. He also went on to

develop many new fields of research while introducing highly innovative method-

ologies, the most important of which comprised the techniques of “fluxions and

fluents”, that later would become part of infinitesimal calculus (about which we will

not speak here). Later in his life, Newton became increasingly critical of Descartes’

methods and views, and he devoted efforts to reconsider his own earlier achieve-

ments against the principles of the classical tradition. Newton sought to consolidate

a unified view of mathematics in which the calculus of fluxions could be reconciled

with Euclid’s Elements or with Apollonius’ conics.

In 1669 Newton was appointed to the Lucasian Chair of Mathematics at Cam-

bridge, following Barrow’s resignation in order to take a position as chaplain to the

King. Newton’s lecture notes indicate that he devoted great energies between 1673
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and 1683 to algebra, the field of knowledge that Barrow described a few years earlier

as “not yet a science”. It is not completely certain that the dates retrospectively

added to the notes reflect the actual teaching of Newton during those years, but it is

quite clear that the notes underwent many transformations, before being published

as a Latin book in 1707. Several English editions of the book, Universal Arithmetick,

were published over the following decades, and they were widely read and highly

influential in 18th century England.

From the point of view of its intrinsic mathematical value, Universal Arithmetick

is far from being one of Newton’s most important texts. As a matter of fact, he

did not really mean to publish his notes. Retrospectively he even manifested his

discontent when the book was published thanks to the efforts of William Whiston

(1667–1752), Newton’s follower in the Lucasian chair. Between 1684 and 1687

most of Newton’s efforts were devoted to the writing of Philosophiae Naturalis

Principia Mathematica (“Mathematical Principles of Natural Philosophy”), the real

climax of his scientific opus (and it must be said that, also in the case of this epoch-

making book, Newton was not at all enthusiastic about its publication for fear of

criticism that it might attract. Publication became possible in the end thanks to the

continued intercession of the famous astronomer Edmond Halley (1656–1742)).

In the following years Newton was very busy with debates that arose in the wake

of the publication of the Principia. At this time, all plans for a possible publica-

tion of his algebraic notes remained unattended. But then, in the 1705 elections to

the British Parliament, when Newton presented his candidacy but his campaign did

not show signs of taking-off, some of his colleagues at Cambridge promised their

support in exchange for a considerable donation on his side to Trinity College, and

a final permission to publish the notes, after these would be revised and edited by

Whiston.

I take the trouble to tell all these details in the background to the publication

of Universal Arithmetick, just in order to stress the almost incidental character of

its appearance. If we compare the published version with some of the manuscripts

found in Newton’s scientific legacy, it is easy to recognize the many hesitations

and continued changes throughout the years. This should come as no surprise, of

course, given that these were drafts and teaching notes, rather than a text prepared

carefully for publication. But those who prepared the various editions for print did

not always pay close attention to all nuances and changes. Accordingly, different

points of emphasis are noticeable within the published texts as well as ideas that

conflict with those appearing in earlier versions.

The point is that, whatever the background to its publication, the many readers

of the book saw its contents as expressing, in all respects and without qualifica-

tions, the ideas of the great Newton. No doubt, beyond the intrinsic mathematical

assets or setbacks of the ideas exposed in the book, the very authority of Newton

as their perceived supporter gave them an enormous legitimation that would help

disseminating and assimilating them in the mainstream of ideas about algebra and

arithmetic in Europe.

The focus of Universal Arithmetick was in algebraic practice, and there was little

room in the text for debates on the foundations of the discipline. The central con-
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cepts were only briefly explained and the rules of calculation were presented without

any kind of comments or arguments for legitimation. By contrast, every technique

that was explained was accompanied by many examples that were worked out to

the details. The influence of Viète is clearly visible throughout the text, but even

more pervasive is the presence of Cartesian algebraic methods for problem solving.

While the book as a whole is an implicit way to fully legitimize the methods of

algebra and its use as a tool for solving geometrical problems, Newton used every

available opportunity to stress his own preference for the classical methods of syn-

thetic geometry and continued to praise its virtues and to support it as the example

to be followed everywhere in mathematics.

Newton’s attitude towards Descartes’ ideas was complex and ambivalent at best.

In the margins of Newton’s copy of La géométrie we find many critical annotations:

“Error”, “Non probo”, “Non Geom”, “Imperf ”. They may have been written while

Newton was still a student at Cambridge and they referred to Descartes’ use of

algebra in a geometrical context. Later on, however, as he himself began to teach

algebra, and after having been exposed to the kind of ideas developed by Wallis,

Newton was more open to admit the advantages of applying algebraic methods to

geometry.

In the opening chapter of the book, Newton provided a concise definition of

number, combining together ideas that had appeared in the various traditions from

which he was taking inspiration:4

By Number we understand, not so much a Multitude of Unities, as the

abstracted ratio of any Quantity, to another Quantity of the same Kind,

which we take for Unity. And this is threefold; integer, fracted, and

surd: An Integer, is what is measured by Unity; a fraction, that which

a submultiple Part of Unity measures; and a Surd, to which Unity is

incommensurable.

This synthesis is extremely interesting. On the one hand, following Barrow, also

Newton tended to eliminate the separation between continuous and discrete magni-

tudes. On the other hand, like Wallis, he identified ratios with numbers, but he abode

by the classical demand that the ratio be between “quantities of the same kind”. The

unit, the integers, the fractions and the irrational numbers appear here—perhaps

for the first time and certainly in an influential text in such clear-cut terms—all as

mathematical entities of one and the same kind, the differences between them being

circumscribed to a single feature clearly discernible in terms of a property of ratios:

either the ratio with unity is exact (integer), or the ratio with a part of unity is exact

(fraction), or there is no common measure between the two quantities in the ratio

4 There are various editions of this book. I cite here from the 1769 edition: Universal arithmetick:

or, A treatise of arithmetical composition and resolution. Written in Latin by Sir Isaac Newton.

Translated by the late Mr. Ralphson; and rev. and cor. by Mr. Cunn. To which is added, a treatise

upon the measures of ratios, by James Maguire, A.M. The whole illustrated and explained, in a

series of notes, by the Rev. Theaker Wilder, London: W. Johnston. This passage is on p. 2.
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(surd). Moreover, and very importantly, numbers are abstract entities: themselves

they are not quantities, but they may represent either a quantity or a ratio between

quantities.

The influence of Newton’s definition is clearly visible in many eighteenth-

century books throughout Europe, in which it is sometimes repeated verbatim. But

the remarkable fact is that this definition is not put to use within Newton’s own book.

As already said, Newton focused in the book on the practice of problem-solving and

he gave little attention to philosophical or methodological questions concerning the

central concepts of algebra and arithmetic.

Newton also introduced the negative numbers without much comment or philo-

sophical considerations, while indicating what is it that characterizes them as quan-

tities: quantities may be “affirmative”, i.e., larger than nothing, or “negative”, i.e.,

less than nothing. Newton did not adopt the terminology of Wallis, who had called

them “fictions” or “imaginary quantities”. Rather, he relied on analogies, relating

the negative numbers to “debts” or “subtraction of a larger number from a smaller

one”. Where Wallis had spoken of “impossible subtraction”, Newton just spoke

of a subtraction to whose outcome we anticipate a “−” sign, and without further

distinguishing between positives and negatives. He also presented the rules of mul-

tiplication with signs without further ado, with no explanations or justifications, and

simply providing numerous examples of their use.

There was no new element in Newton’s presentation that had not previously

appeared in some British book on algebra, but the systematic and simple picture

arising from the book, and—perhaps more importantly—the fact that this picture

carried with it the authoritative legitimation stamp of the great Newton, endowed

it with a special status that helped turning it into the standard point of necessary

reference for both concepts and terminology all around Europe over the decades to

come.

Newton’s attitude towards imaginary numbers is of particular interest because

of the hesitation and lack of final decision that arises from the published text. This

attitude reflects the remaining weaknesses in the concept of number, seen as either

a quantity, or a ratio of quantities. Newton’s inability to take a final stance on this

matter derived from the difficulty involved in considering square roots of negative

numbers as quantities of some specific kind, like the rest of the numbers. Imaginary

numbers appear in Newton’s book in the section where he discusses Descartes’ rules

for counting roots of polynomials (explained above) and the relationship between

roots and coefficients.

In his early lectures in Cambridge, Newton spoke—following Descartes—about

the possibility that a polynomial equation may have roots that exists “only in our

imagination”, but to which no quantity can be associated. In this sense the term

“imaginary” described quite literally the way these roots were conceived. The

manuscripts of the lectures show that he gradually changed this view and the asso-

ciated terminology. In one place, Newton formulated a version of the fundamental

theorem of algebra as the assertion that the number of roots of a polynomial equation

cannot surpass the highest order of the unknown in the equation, but these roots may

be either positive, or negative or “impossible” (rather than “imaginary”). And what
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he meant by “impossible” he explained by reference to the solution of the following

equation:

x2 − 2ax + b2 = 0.

Here, we obtain two roots, namely,

a +
√

a2 − b2 and a −
√

a2 − b2.

Now, when a2 is greater than b2—Newton wrote—then the roots are “real”. In

the opposite case, when b2 is greater than a2, then, of course, the root is “impossi-

ble”. But interestingly, Newton nevertheless went on to stress that both expressions

are roots of the polynomial, for the simple reason that, when introduced in the equa-

tion in place of the unknowns, then the equation is satisfied because “their factors

eliminate each other”. In other words: a square root of a negative number is an

impossibility and hence it does not represent a number in the proper sense of the

word, but expressions containing such impossible entities are legitimate roots of an

equation and they allow for an appealing formulation of the fundamental theorem

of algebra, as Newton conceived of it.

We have already seen these kinds of ambiguous attitudes appearing in algebraic

texts at least since the time of Cardano and Bombelli. The fact that by the time of

Newton the ambiguity has not been fully bridged is highly indicative of the perva-

siveness of certain basic ideas that in retrospective we see as completely inadequate.

Newton’s formulations make patent the continued tension between what the existing

concepts of number implied and what the actual practice required. More than a cen-

tury of intense mathematical activity would still be needed before truly satisfactory

definitions of imaginary numbers would appear, as we will see in the next chapters.

No less confusing for the reader could be Newton’s remarks on the relationship

between algebra and geometry. As I already said, Newton made extended use of

Cartesian methods that combine algebra and geometry, and nevertheless, in some

places he specifically refrained from using algebra, while stressing that even in

apparently difficult geometrical problems algebra is not the adequate tool for finding

the solution. In the printed edition of Universal Arithmetick there is a well-known

passage in which Newton declared that Cartesian methods endanger the purity of

geometry. He wrote:5

Equations are Expressions of Arithmetical Computation and properly

have no Place in Geometry, except as far as Quantities truly Geomet-

rical (that is, Lines, Surfaces, Solids and proportions) may be said to

be some equal to others. Multiplications, Divisions, and such sorts of

Computations, are newly received in geometry, and that unwarily, and

contrary to the first Design of this Science ... Therefore these two Sci-

5 Universal Arithmetick, p. 470.
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ences ought not to be confounded. The Ancients did so industriously

distinguish them from one another, that they never introduced Arith-

metical Terms into Geometry. And the Moderns, by confounding both,

have lost that Simplicity in which all the Elegancy of Geometry con-

sists.

These passage was repeatedly cited in many European mathematical texts over the

following decades. The mathematicians who cited it were actually those who sought

to preserve the primacy of geometry over algebra. It is quite ironic to contrast what

Newton wrote with the approach which is dominant in Universal Arithmetick, where

the prominence of algebra in practice is so blatant. From reading the manuscripts

of the various versions of the book, one readily realizes that Newton continually

hesitated and changed his views on this important point. The clear-cut statement

cited above is what in the end was included in all editions of the book, and this is

what the readers came to associate with the name of Newton.

I want to stress that in the late 1670s, the time when he was involved with these

texts, Newton had just begun reading Pappus. He came to the conclusion that the

putative method of discovery of the ancients (the “analysis” that I have already

mentioned) was superior to Cartesian algebra. At this time, Newton began conceiv-

ing Descartes and Cartesians of all sorts as his personal enemies, while at the same

time he began also to conceive himself as direct heir of the ancients. The view of

algebra that emerged in this context saw it as a heuristic method that could be used

for discovery, but that was not adequate for publication. Algebra—Newton thought

at this time in line with Barrow’s views—lacks the clarity of geometry, and it is

also philosophically misleading since it makes us believe that non-existent things

actually exist.

The underlying relationship between algebra and geometry is even more complex

in the case of Newton’s most famous and influential book, the Principia. From the

vantage point of later developments in mathematics, it appears to us convenient to

present this revolutionary book in the language of the calculus, a language whose

initial stages Newton himself was instrumental in help shaping in some of his other

important works. But a reader of the original text of the Principia will find its style,

on the face of it, more reminiscent of classical Greek geometry than of a 19th cen-

tury treatise of classical mechanics. This is, however, a kind of “classical façade”

that Newton worked hard to bestow upon his text. Behind it, one can find in several

places a wide variety of recently developed mathematical methods underlying the

classical surface: infinite series, infinitesimals, quadratures, limit procedures, and

also algebraic methods. There was plenty of evidence in Newton’s text to create an

image of him as an uncompromising champion of classical views about the primacy

of geometry over algebra. In actual truth, however, especially when it came to devel-

oping a mathematical practice in relation with numbers and algebra, he followed a

more flexible and variegated attitude.

The end of the 17th century marks a significant inflection point in our story. The face

of science had profoundly changed, as had changed the place of science in society
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in most of Europe The consolidation of the new symbolic algebra, especially in

the works of Viète and Descartes, and the rise of the infinitesimal calculus in the

works of Newton and Leibniz, were a truly significant turning point in the history of

mathematics. Many of the topics that we have been discussing thus far receded into

the background. The influence of Euclid’s Elements in the mainstream of advanced

mathematical research declined. The importance of the Eudoxian theory of propor-

tions almost disappeared. The divide between continuous magnitudes and discrete

numbers lost in interest. The concept of number had undergone deep changes and

the door was now open to a new stage in which significant additional changes would

completely reshape this concept over the next two centuries. These changes will be

described in the remaining chapters of the book.

Appendix 8.5 The Quadratic Equation. Descartes’ Geometric

Solution

A particularly illuminating perspective from which to understand the innovation

implied by Descartes’ approach to the relationship between algebra and geometry

is afforded by a detailed examination of his treatment of the quadratic equation

and the geometric solutions he suggested for them. In this appendix I bring some

direct quotations from La géométrie. The reader may thus get a first-hand grasp of

the way Descartes handled the various kinds of numbers and geometric magnitudes

that appear in his equations. Of particular interest is the unhesitant transition from

algebraic expressions to geometric interpretations. We are of course used to such

transitions, but they implied a far-reaching innovation, even if Descartes did not

particularly emphasized this in the book.

The following is quoted from the original text:6

For example, if I have z2 = az + bb, I construct a right triangle NLM

with one side LM, equal to b, the square root of the known quantity

bb, and the other side, LN, equal to ½a, that is to half the other known

quantity which was multiplied by z, which I suppose to be the unknown

line. Then prolonging MN, the hypothenuse of this triangle, to O, so that

NO is equal to NL, the whole line OM is the required line z.

6 (Descartes 1637 [1954], pp. 13–14).


